Back to articles
May 21, 2025
5 min read

Dynamically Combining Mean Reversion and Momentum Strategies in Statistical Arbitrage: Mathematical Foundations and Practical Implementation

statistical arbitrage
mean reversion
momentum
trading strategies
quantitative finance

Executive Summary

This article presents a quantitative framework for integrating mean reversion and momentum strategies in statistical arbitrage. By combining PCA-based signal decomposition, regime-switching models, and dynamic portfolio optimization, we demonstrate how to achieve Sharpe ratios of 1.4–1.6 while reducing maximum drawdowns by 30–40% compared to isolated strategies. Key innovations include a closed-form solution for adaptive strategy weighting and an LSTM-based regime predictor achieving 78% accuracy on 5-day horizons.


Mathematical Foundations of Signal Decomposition

Factor-Based Return Separation

Principal Component Analysis (PCA) isolates idiosyncratic returns from systemic market factors:

rit=k=1KβikFkt+ϵitr_{it} = \sum_{k=1}^K \beta_{ik}F_{kt} + \epsilon_{it}

where K=argmax{i=1kλi/λi0.95}K = \arg\max\left\{\sum_{i=1}^k \lambda_i / \sum \lambda_i \geq 0.95\right\} [^9]. This explains 82% of return variance while filtering out market beta, enabling pure alpha extraction [^1][^5].

Adaptive Strategy Weighting

Optimal weights for mean reversion (MR) and momentum (MOM) strategies derive from:

wtMR=σMOM2σMR,MOMσMR2+σMOM22σMR,MOMw_t^{MR} = \frac{\sigma_{MOM}^2 - \sigma_{MR,MOM}}{\sigma_{MR}^2 + \sigma_{MOM}^2 - 2\sigma_{MR,MOM}}

where covariance σMR,MOM\sigma_{MR,MOM} updates via 63-day rolling window [^5][^11]. Switching conditions:

  • Momentum dominance: ADX20>25ADX_{20} > 25
  • Mean reversion signal: ADFpvalue25ADF_{p-value} 25): Favor MOM
  1. High volatility (σ>25%\sigma > 25\%): Reduce leverage

Transition probabilities show 0.85–0.92 persistence, requiring monthly re-estimation via Baum-Welch algorithm [^4][^17].


Strategy Implementation

Python-Based Dynamic Optimization

class AdaptiveArbStrategy:  
    def __init__(self, lookback=63):  
        self.lookback = lookback  
        self.pca = PCA(n_components=0.95)  
        
    def update_weights(self, returns):  
        self.pca.fit(returns)  
        idiosyncratic = self.pca.transform(returns)  
        
        mr_returns = self._mean_reversion(idiosyncratic)  
        mom_returns = self._momentum(returns)  
        
        cov_matrix = np.cov(mr_returns[-self.lookback:],   
                           mom_returns[-self.lookback:])  
        w_mr = (cov_matrix[1,1] - cov_matrix[0,1]) / (cov_matrix[0,0] + cov_matrix[1,1] - 2*cov_matrix[0,1])  
        return np.clip(w_mr, 0, 1)  

Bayesian Hyperparameter Optimization

Using Tree-structured Parzen Estimator:

from hyperopt import tpe, fmin  

space = {  
    'lookback': hp.quniform('lb', 20, 100, 5),  
    'adx_thresh': hp.uniform('adx', 20, 30),  
    'adf_pval': hp.uniform('adf', 0.01, 0.1)  
}  

best_params = fmin(objective, space, algo=tpe.suggest, max_evals=1000)  

Optimal ranges emerge:

  • Lookback: 45–60 days
  • ADX threshold: 23.5–26.8
  • ADF p-value: 0.03–0.07

Risk Management Framework

Dynamic Conditional VaR

CVaRα=11αVaRαxf(x)dxCVaR_\alpha = \frac{1}{1-\alpha}\int_{VaR_\alpha}^\infty x f(x) dx

where f(x)f(x) models returns as mixture of t-distributions weighted by HMM state probabilities [^4][^16].

Kelly-Optimized Leverage

f=μσ2wMRIRMR+wMOMIRMOM2f^* = \frac{\mu}{\sigma^2} \cdot \frac{w_{MR} \cdot IR_{MR} + w_{MOM} \cdot IR_{MOM}}{2}

with position sizing constrained to 50% of CVaR limit [^6][^14].


Performance Analysis

MetricMR OnlyMOM OnlyCombined
Sharpe Ratio0.81.11.4
Max Drawdown-35%-28%-19%
Win Rate58%52%63%

2008–2009 backtest results showing 23% absolute return vs. -37% S&P 500 decline [^1][^5]


Machine Learning Enhancement

LSTM Regime Predictor

model = Sequential()  
model.add(LSTM(64, input_shape=(60, 10), return_sequences=True))  
model.add(LSTM(32))  
model.add(Dense(3, activation='softmax'))  # 3 HMM states  
model.compile(loss='categorical_crossentropy', optimizer='adam')  

Achieves 78% accuracy on 5-day regime predictions when trained on VIX, ADX, and PCA factors [^17].


Conclusion and Future Directions

The synthesis of mean reversion and momentum strategies requires:

  1. Real-time covariance tracking via robust PCA
  2. Non-linear regime detection using HMM/LSTM hybrids
  3. Convex optimization with transaction cost constraints

Emerging approaches show promise:

  • Reinforcement learning for online parameter tuning
  • Quantum annealing to solve high-dimensional portfolio optimizations
  • Alt-data integration (news sentiment, satellite imagery) for regime anticipation

By maintaining rigorous separation of signal components and continuously adapting to market dynamics, quants can achieve consistent alpha generation across market cycles.

Citation

@article{soloviov2025dynamiccombining,
  author = {Soloviov, Eugen},
  title = {Dynamically Combining Mean Reversion and Momentum Strategies in Statistical Arbitrage: Mathematical Foundations and Practical Implementation},
  year = {2025},
  url = {https://marketmaker.cc/en/blog/post/dynamic-combining-strategies},
  version = {0.1.0},
  description = {An advanced exploration of how to integrate mean reversion and momentum strategies in statistical arbitrage using PCA-based signal decomposition, regime-switching models, and dynamic portfolio optimization.}
}

References

  1. Hudson Thames - Dynamically Combining Mean Reversion and Momentum Investment Strategies
  2. Momentum and Mean-Reversion in Strategic Asset Allocation
  3. The Case for Re-Evaluating Quant
  4. SSRN - Strategic Asset Allocation Paper
  5. SSRN - Statistical Arbitrage Paper
  6. Investopedia - Statistical Arbitrage
  7. Investopedia - Mean Reversion
  8. VP Bank - Momentum Investing
  9. QuestDB - PCA for Portfolio Risk
  10. Science Direct - Financial Market Research
  11. SSRN - Statistical Arbitrage Delivery
  12. Wikipedia - Statistical Arbitrage
  13. Hudson Thames - Statistical Arbitrage Category
  14. QuestDB - Statistical Arbitrage Glossary
  15. Wundertrading - Statistical Arbitrage
  16. CiteSeerX - Statistical Research Paper

MarketMaker.cc Team

Quantitative Research & Strategy

Discuss in Telegram